CIP – Aseptic 2023

Steven Haferkamp

Jeff Merritt

Johnny Elliott

Steven Haferkamp

Work Experience / History:

Danone North America - Fort Worth, TX - (1997-2002, 2004-Current)

Blue Bell Creameries - Brenham, TX - (1991-1997, 2002-2004)

Education: BS Food Science, Texas A&M University, College Station, TX 1997

Hobbies: Golf, Special Olympics, Type 1 Diabetes Network

Jeffrey Merritt

Johnny Elliott

Work Experience / History:

Gosner Foods (1980-2004)

Pacific Foods (2004-2010) - Director of Operations

Steuban Foods (2010-2013) - Director of Technology

California Natural Products (2014-2017) - SME Aspetics

Ecolab (2017-present)

Education: BS Computer Science, SHU

Hobbies: Hunting

Work Experience / History:

Dean Foods (1988 – 2009)

Diversey (2009 – 2010)

Ecolab (2010- present)

Education: ETSU Bachelor of Business

Administration

Hobbies: Restoring old cars, especially corvettes

WHY DUAL PRESENTATION?

TWO COMPANIES.

ONE MISSION.

CLEAN.

GENERAL STUFF

O CONTRACTOR OF THE PARTY OF TH

- **PARKING** SPOT NUMBER
- AS WE COMPLETE A
 CHAPTER WORDING GOES
 TO WHITE (COMPLETED)
- WHERE WE ARE IN THE PRESENTATION IS MARKED WITH BLUE LETTERINGS
 (PRESENT)

Agenda

• Introductions & Acknowledgement

4

• Effective Monitoring Program

Aseptic Process Overview (Scope of Presentation)

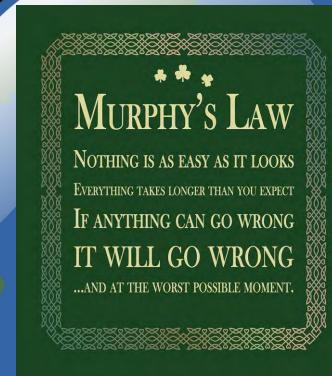
5

• Identification of Critical Points in Process

• Effective Cleaning Program

6

 Feedback Loop to an Effective Cleaning Program


3 • Effective PM Program

7

Examples of Program Failures

CIP – Aseptic 2023

World of Cleaning

O Intro

Agenda

• Introductions & Acknowledgement

• Aseptic Process Overview (Scope of Presentation)

• Effective Cleaning Program

3 • Effective PM Program

• Effective Monitoring Program

Identification of Critical Points in Process

• Feedback Loop to an Effective Cleaning Program

• Examples of Program Failures

Complete Cleaning Program

SYSTEM OVERVIEW – DIRECT/INDIRECT HEAT Intro BATCHING Balance Tank **INFUSION** DIRECT Plate Heat Steam Echanger **INDIRECT** Steam Centrifugal Pump **INJECTION** Centrifugal Pump Hold Tube Vacuum Chamber Centrifugal Pump Sterile Homogenizer **SVC** Tank **FILLER** Plate Heat

Exchanger

Agenda

• Introductions & Acknowledgement

Aseptic Process Overview (Scope of Presentation)

• Effective Cleaning Program Fundamentals

3 • Effective PM Program

Effective Monitoring Program

Identification of Critical Points in Process

• Feedback Loop to an Effective Cleaning Program

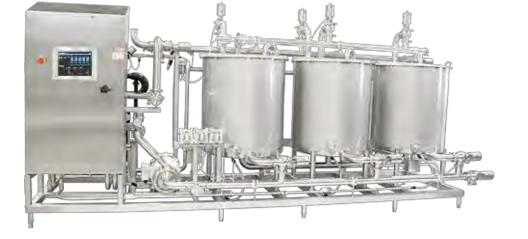
Examples of Program Failures

COP-CEEAN BUTAGE

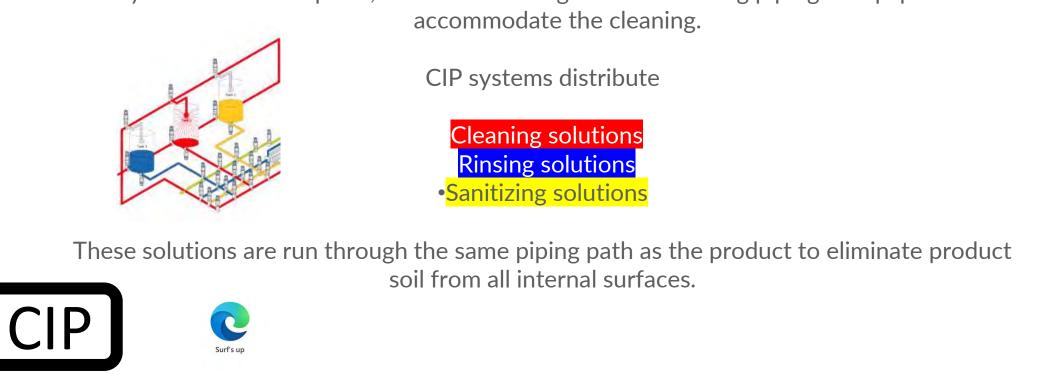
A C-ASEPTIC INTERMEDIATE CLEAN

FUNDAMENTAL#1 CIP IS NOT A PLUG AND PRAY




CIP

FUNDAMENTAL #2 YOU CANNOT CLEAN AROUND INADEQUATE MAINTENANCE/PM PROGRAM



BASICS OF CIP

Cleaning in place (CIP) is a set of processes conducted to properly clean all or part of a system as it sits in place, without removing or disassembling piping or equipment to accommodate the cleaning.

Monitoring TACT During CIP

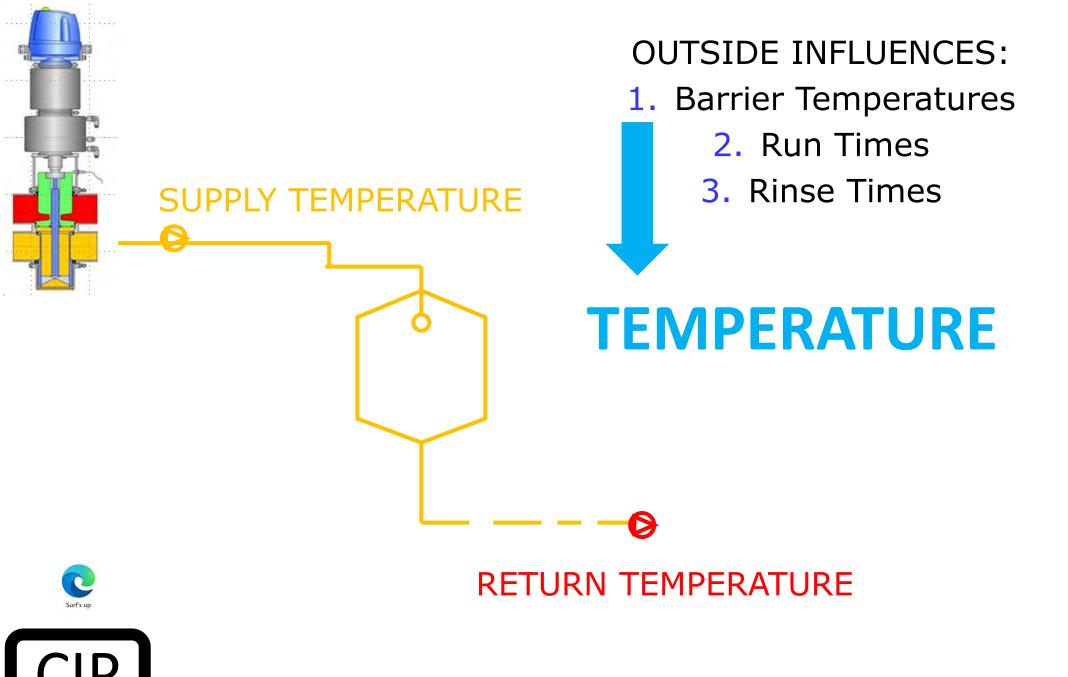
ACROSS ENTIRE PROCESS

Temperature

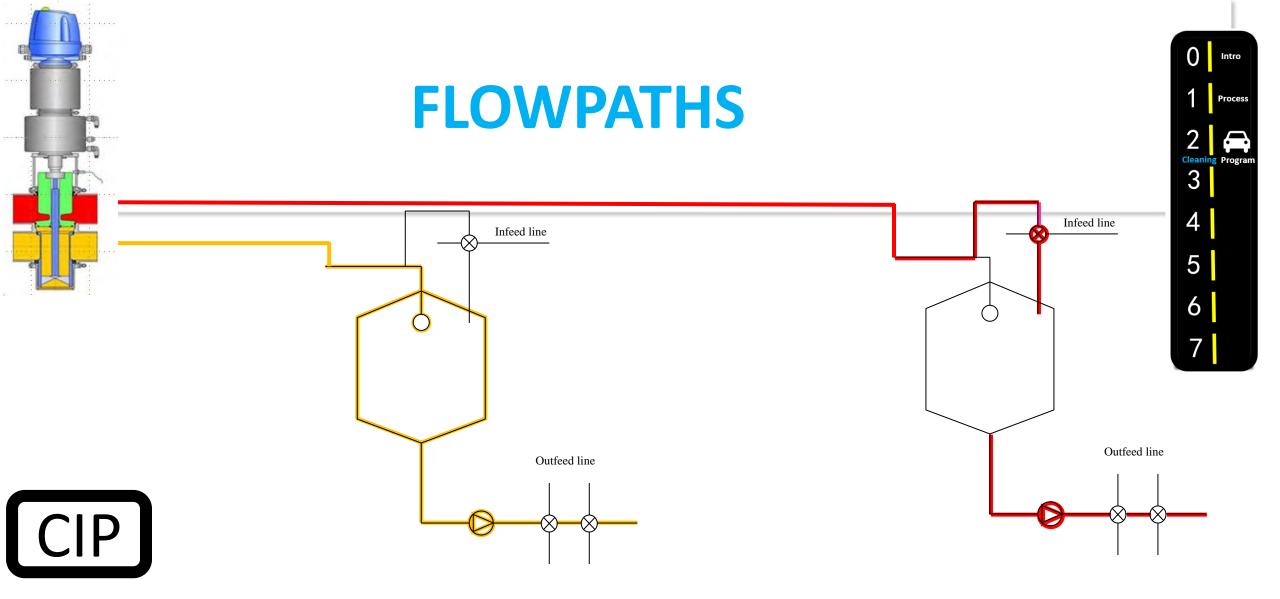
Action (FLOW)

C Concentration

T Time

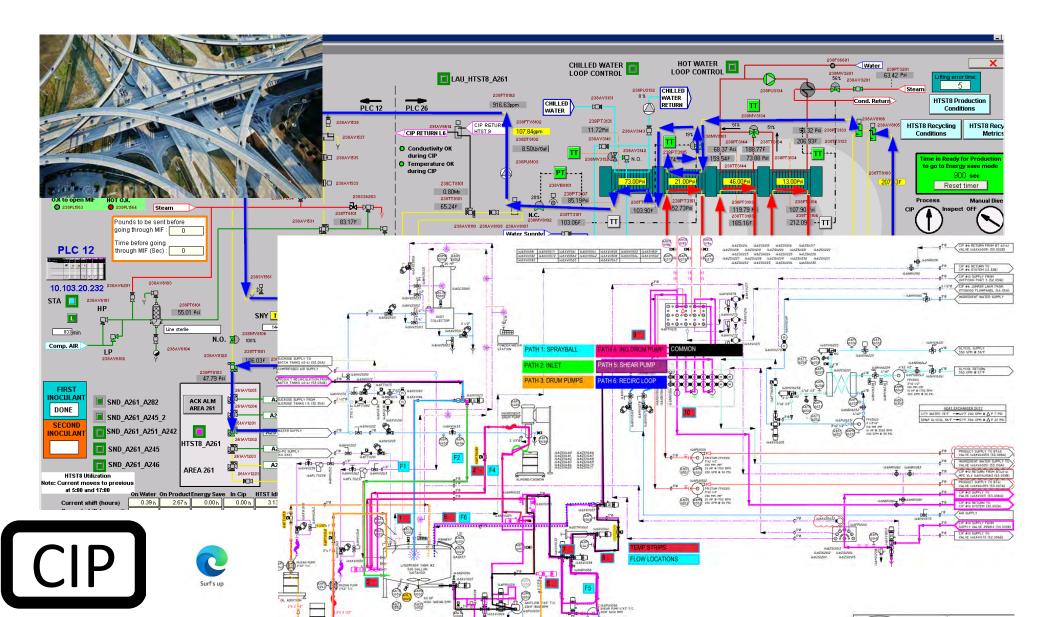


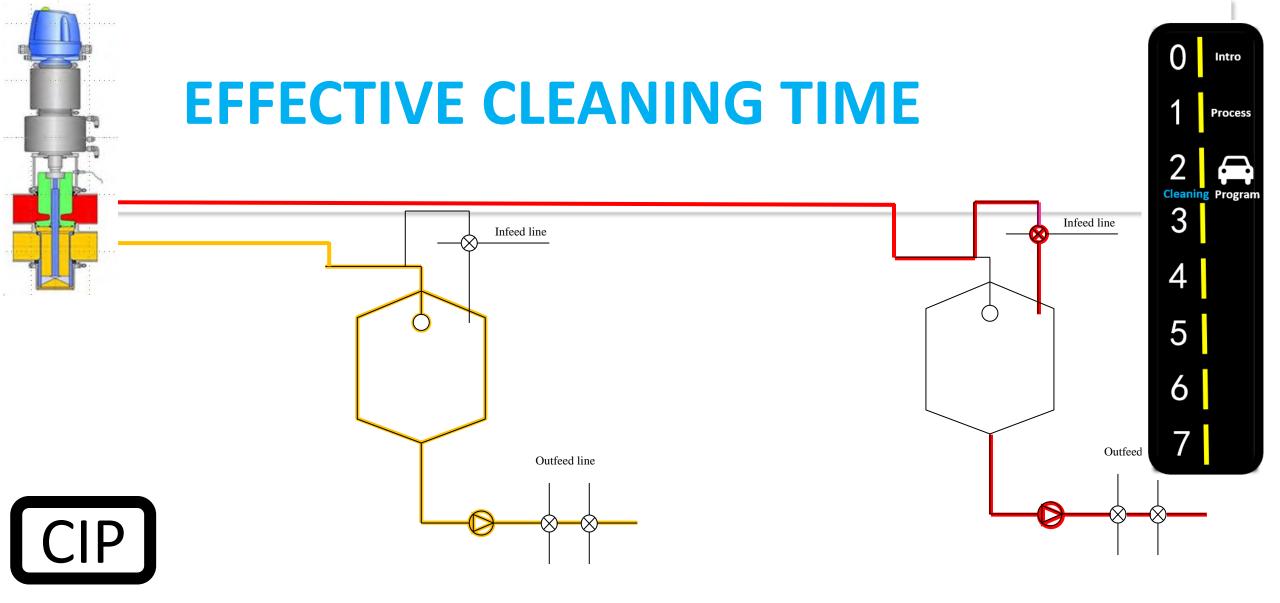
The control **ANYWHERE & ANYTIME** of these 4 parameters guaranty the quality of the CIP


AIC FREQUENCY

Aseptic intermediate cleaning (AIC) can be performed to prolong the production time between full CIPs. When AIC is selected, the product is displaced by sterile water before cleaning starts. During the AIC sequences, the holding tube is kept at the sterilization temperature, thus keeping the aseptic parts of the unit sterile.

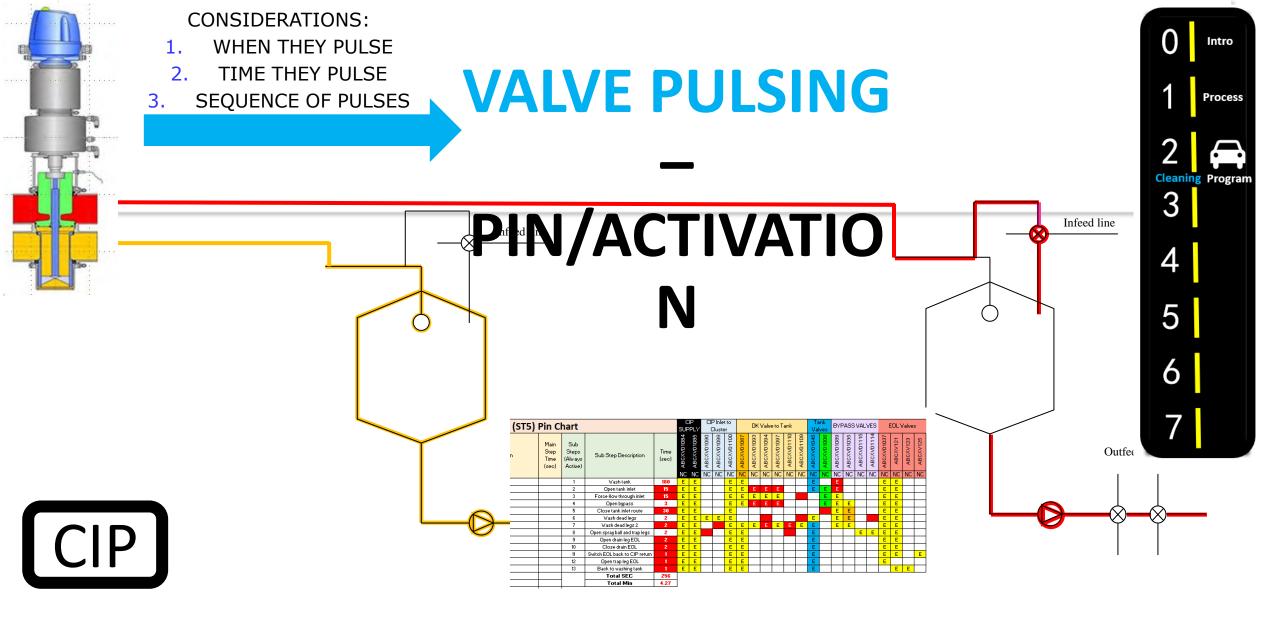
• Intermediate short CIP frequency is part of a cleaning program. The parameters of the AIC determines the effectiveness of the CIP.




Example# 1 : CIP spray ball supply

Example #2 : CIP tank infeed line

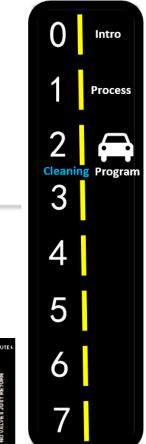
FLOW PATHS – KNOW THEM



Intro Process Cleaning Program

Example# 1 : CIP spray ball supply

Example #2 : CIP tank infeed line



Example# 1 : CIP spray ball supply

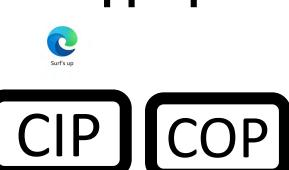
Example #2: CIP tank infeed line

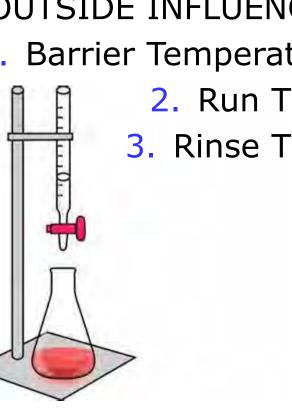
PIN/ACTIVATION CHARTS — KNOW

							Produ	ct Inlet			alls (US) t(LS)	Air I	.ine	from Nozzles	Wat	er/Re-Circ V	avles	Sar	nple Va	alves		mical lition	Pump	Valv													
	D	rgiard Stat	le >>>>			NC	NC		NC	NC	NC	NC	NO	NO	NC	NC	NC	NC	_	NC	NC	NC	OFF	NC													
		Cardilian.				MP	-	FP3		V807	FP1 V807	FP2		COMMON	V6	V7	V27	Causti	Acid	Rinse				-									_				
	T,	Pl	· C41i-ii	lg Learl	P	1223 (LS)		VO	V120	(LS)	(US)	V241	V240	V150	(LS)	(LS)	(LS)	V210	V211	V212	V63	V64	P90	V200													
						ILUI	OPEN	OPEN (29-31	OPEN		OPEN			OPEN	30s	OPEN																					
 ec		Flow					OPEN	ODE:			OPEN	OPEN		OPEN	-1	OPEN																					
aries		thru E6		TL			OPEN	OPEN	ODEN	OPEN		OPEN	CLOSED	OPEN	OPEN	open	open																				
ls .		thru E6		>11000	1		OPEN	(23-3)		OPEN		OFEIV	CLOSED	OPEN	OPEN	орен	after						ON														
ls		thru E6					OPEN	CLOS	OPLIV	OPEN		OPEN	CLOSED	OPEN	OPEN								30 s delay														
s		thru E6				-	OPEN	CLOS	=			OPEN	ciosea ioi	OPEN	OPEN		-	-					then on														
ls		Flow thru E6					OPEN	l D		Open and Closed	Closed and Open		30s open for	OPEN	OPEN								then on 30 s delay														
	<u> </u>	and Q1						(.05- .07)		After 30s	after 30s		30s										before next														
Caustic	If Soda TH1>80	Flow thru E6	Acid 1- 1.5%	980			OPEN	OPEN	OPEN		OPEI			<u> </u>					ROU	TE1			30 s delau			ROU	TE2	ROUT	E 3			ROUTE 4			ROUTI	E5 R0	οL
Acid	C If Acid	and Q1		- 300			OPLIN	(29-31	l oru		OF L	_					-	0 0		9	0 0	0		c c			- I	π.			. —	Ta I	-	0.0	<u>×</u>	Ĩ	Ĩ
	If Soda TH1>80	Flow thru FB	Acid 1-				OPEN	OPEN (29-31	OPEN		OPE			1	0 0 0	23 2 2 2	Valv	Valv	Valv	Valv	vary Valv	Valv	8 8	8 8	2 2 4 5	, w		ATE 2	ĕ	, B	12 TA	12 5	g 8	9 6	PLATE 1		
lation fo	rl If Soda	Flow		:k		OPEN		OPEN (15-31	OPEN		OPEI S.			1 2	Roug m Pu	Rough Rough	Roug EOL	EOL. EOL	EQ. EQ.	EOL	EOL EO	E Session	PAS:	PAS	Rough PROC	CVAL	NE(O	WP.	3T 12	ME 12	9T 12 0L 8T CRITI	8T 12	ST 11	8T 11 8T 12 0.mm			ĺ
nse) 75 min-)s	TH1K45	Flow					0000	OPEN	oper.		OPEI(Ali	pr		Time	8 8		12 By	12 By	12 By	11 8,	1187	11 87	6 6	6 6	9 88	3 8		FLO	ë	8 9	S 28	S. E.	8 8	5 5 E	FLO		Ë
in-300s in-300s	С	thru 56 and Q1					UPEN	(29-31	OPEN		3/4	- 34635	op Descriptio	n (roc)	+		60	E E	60	T8	0 50	to H	0 0	0 0		+	8 8	E E E				4	4	$oldsymbol{+-}$	108		UL 8
sec		Flow thru E6					OPEN	OPEN (29-31	OPEN		OPEI a	tiv)			72 4	128	2.1	9 .	9	0.2	XV11411 - 7	XV11431 - 8	2 7	2 2	7 8	10877	8780	NO VALVE 3		12462	466.2	2884	17 99	7 2	NO VALVE 3 JUST FLOW		NO VALVE 3 JUST RE
ec		Flow thru E6					OPEN		ODEN		OPE				71241	V11V	CV11427	12413	XV12433 -	11410	71141	£ 5	7114	71142 CV114	71142 XV88	V 10	2 V V	D VA		71246	11246 CV12	CV12	71144	/11444. (V11442	DVA		NO.
ries		Flow thru E6		TL<1100	0		OPEN	OPEN (29-31		OPEN					E NO NO	NO NO NO NO	no no	× ×	. ×	× NC	× ×	KC NO	NC NC	NC NC	NO NO NO I	NO NO	NO NO N	2		NC NC	NC NC	NC N	C NC	NC NC			
n .		Flow		Ť		OPEN	ODEN	OPEN		open FOF	closed 1			180	E E	E E E E			- 110			- 110	E	E	E E					E E	E E		E E	E E			
0s		thru E6	i			OPEN	OPEN	(23-31		closed	75sth 2 oper 3			3	E E	E E E E	E						E	Ε			E E			E E	E E	E E	E E	E E			
sec		Flow thru E6					OPEN	OPEN (29-31			OPE 5	'		10		E E E E					- 1	4	E	E	E E	E E	E E	E E		E E	E E	E E	E E	E E			
sec		Flow thru E6					OPEN	OPEN (29-31	OPEN		OPE 7			10		E E E E			-	E		E	E	E	E E		E E							E E			
ec		Flow					OPEN		OPEN		OPE 7			5	E		E E			E		E	E	E	E E		E E	_		E E	E E		E E	E E			
		thru E6					OFEN	(29-31	OFER		1	0		5	E E	E E E E	E E			С	9		E			E E	E E	E		E E	E E	E E	E E	E E			
											1	2		5	E E	E E E E	E C	С	E	E		C C	E				E E			E E	E E	E E	E E	E E			
											1	4		5		E E E E			E E			E E	E				E E					E E					
											1	5				E E E E			E E				E		E E									E E			
											1	7		5	E E	E E E E	E		E				E	E	E E	E E	E E	E		E E	E E	E E	E E	E E			
											1	9		5	E E	E E E E	E		E	Ε	-primo		E -primo	E	E E	E E	E E	E		E E	E E		E E	E E			
											2:	1				E E E E			+	E	-primo E	Ε	E -prim -		E E									E E			
											2	2				E E E E			-	\blacksquare	E		E E				E E					E E		E E			
		7									2	4		5	E E E	E E E E	E			\Box	_	E	E E	E E	E E	E E	E E	E		E	E E	E E	E E	E E			
		J									2	6		5	E E	E E E E	E				E	E	E E	E E	E E	E E	E E	E		E E	E E	E E	E E	E E			
N.											2	7		5	E E	E E E E	E	1 1		1 1	E	E	E E	E	EIEI	EEE	EE	E		EE	EE	E E	E	I E E	<u> </u>		

CONCENTRATION OF SOLUTIONS

 Use of Conductivity Meters and **Titrations OUTSIDE INFLUENCES:**


 Built Caustic compared to **Traditional Caustic**


 Use of Correct Chemical for **Appropriate Equipment**

1. Barrier Temperatures

2. Run Times

3. Rinse Times

BASICS OF COP & MANUAL CLEANING

- > Cleaning out of Place (COP) is a cleaning process used when the parts of equipment cannot be cleaned effectively in place, or are difficult to clean.
- > This means the equipment must be disassembled before cleaning. It is then usually taken to a designated cleaning station or area for cleaning. The same cleaning solutions are often still used to sanitize when cleaning out of place.
- Once the cleaning has taken place, the equipment is then checked once reassembled to ensure no parts have been missed.

5

6

7

BASICS OF COP & 1 MANUAL CLEANING 2

COP is much like CIP. Still need all of the TACT parameters.

COP differs greatly in the "Action" as it requires operators to manually scrub in most instances

BASICS OF COP & MANUAL CLEANING

KEY WATCHOUTS

>Application of Foam on Hot Equipment

➤ Application of Foam/Chemical without any Action – "Break Time"

Agenda

• Introductions & Acknowledgement

Effective Monitoring Program

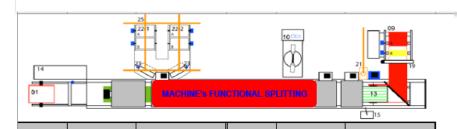
 Aseptic Process Overview (Scope of Presentation) • Identification of Critical Points in Process

Effective Cleaning Program
Fundamentals

• Feedback Loop to an Effective Cleaning Program

• Effective PM Program

• Examples of Program Failures


PMAINTENACE PROGRAM

PMAINTENACE PROGRAM

Functions

Thermo-sealing

Transfer

Crane

Splicing system

Sealing tool

Press

Spiking

Food safety device

Equipment

Trolley

Unwinder

Punches

Counter mould

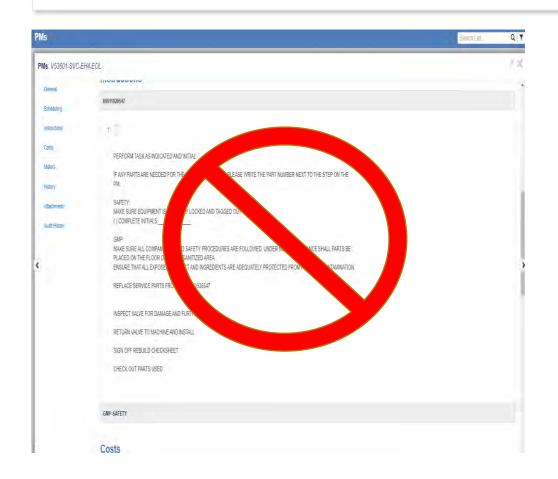
Thermostating unit

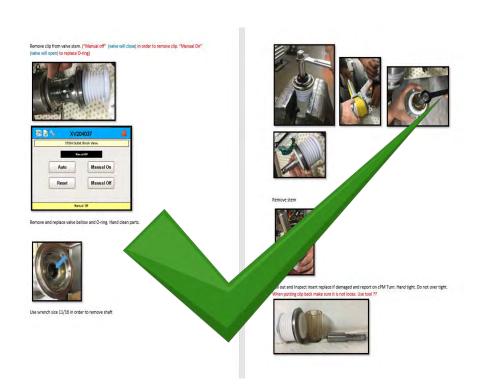
Mould

Crane

Functions

PS Heating


VALVE SEATS


- TANK GASKETS
- DAIRY PMS(GASKETS)
- PHE GASKETS
- SPRAYBALLS

		Unroller		<u> </u>	Guide	e/Scrap cutter	· •	FRAID	HLL	3								
M040	Labelling	Slitting			Food	safety device												
<u>m040</u>	Labelling	Label introduction Moulds rotation Electric cabinet	Module	Functions	Intervention Unit	0	esignation	Operation	Food Safety Risk (1-Lovi: 2-Medium, 3-High)	pe of eratio Dura	Unity ion H=hour M=minut	Periodicity (hour)	Periodicity (Week) hour/week	State	C/S	critributor	umber of sople	forkload
		Hopper environment	84040	PS introduction									150			Ö	Žå	\$
		Filler	MIUTU	PS introduction	Reel axis	Check axis, guides & flas	sks	Check wearing and centring		CK 15	М	600	4	MIP	S	Р	1	0.25
		Dynamic mixer				Check wheel & support		Check wearing, fixing, state of the wheel		CK 15	M	600	4	MIP	S	Р	1	0.25
					Guide	Check Nofrix guide at the	entrance	Check wearing and position, clean the guides		CK 15	M	3,600	24	MOP	S	Р	1	0.25
MOEN	Filling	CIP			Unwinder	Replace reel supports		Replace the reel supports		RE 30	M			MOP	С	P	1	0.50
		Air hopper			Unwinder	Check driving system		Check intensity and noise of the engine		CK 15	M	3,600	24	MIP	S	M	1	0.25
					Unwinder	Replace gear-motor of th	e unroller	Replace the gear-motor		RE 1.0	H			MOP	С	M	1	1.00
		Air-vacuum membrane			Unwinder	Check driving system		Check state and rolls positionning		CK 30	M	1,800	12	MOP	S	M	1	0.50
		Laminar flow			Unwinder	Check reel support		Check wearing and position (reference in height)		CK 15	M	3,600	24	MOP	S	M	1	0.25

PMAINTENACE PROGRAM

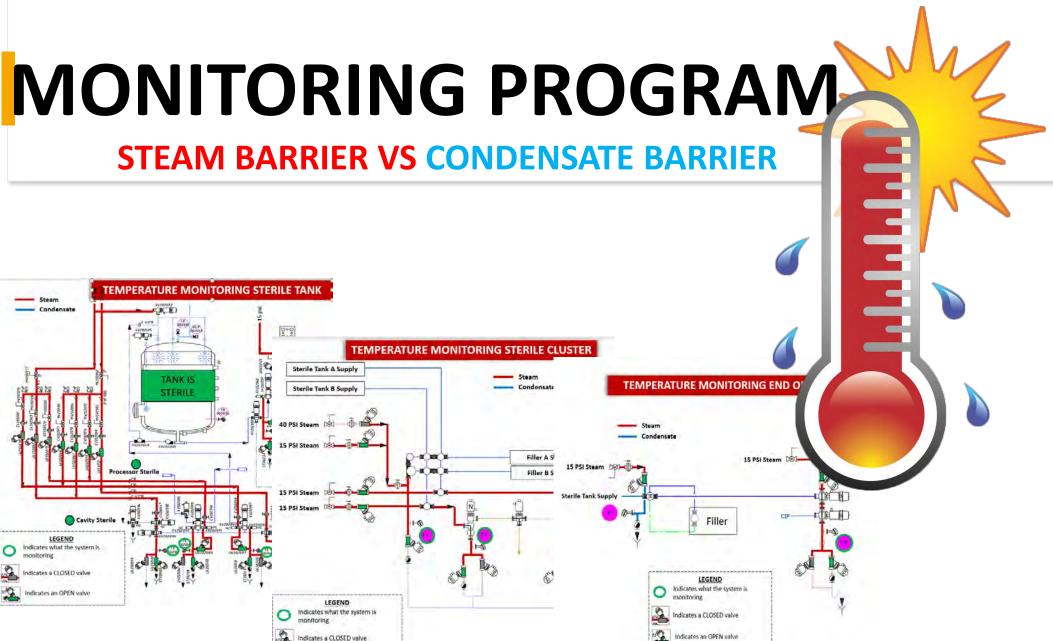
Intro **Process** Cleaning

Agenda

• Introductions & Acknowledgement

Aseptic Process Overview (Scope of Presentation)

• Effective Cleaning Program Fundamentals


3 • Effective PM Program

Effective Monitoring Program

• Identification of Critical Points in Process

• Feedback Loop to an Effective Cleaning Program

Examples of Program Failures

ndicates an OPEN valve

Intro **Process** Cleaning **Program Program Monitoring Program**

MONITORING PROGRAM

MANAGEMENT OF CHANGE – TEAM APPROACH

CHANGE REQUEST

	· · · · · · · · · · · · · · · · · · ·	TOL ITE	
Parameter	Description	Details	Reason for Change
Equipment Type	Batch Tank	461	
CIP#		18	
TACT Parameter:	Old SP		
Time	New SP		
TACT Parameter:	Old SP		Tank mS is running too high on caustic.
Concentration	New SP		on caustic.
TACT	Old SP		
Parameter: Temperature	New SP		
REQUESTOR:	1		
APPROVER:			
DATE OF REQ	UEST:		

TACT PARAMETERS LOCKED DOWN

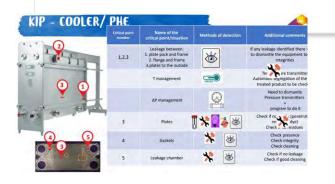
Agenda

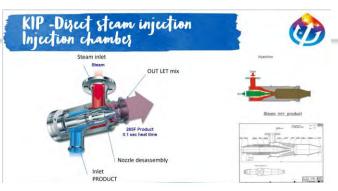
• Introductions & Acknowledgement

Aseptic Process Overview (Scope of Presentation)

• Effective Cleaning Program Fundamentals

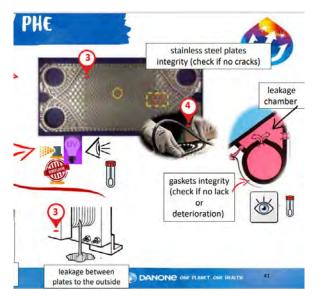
? • Effective PM Program

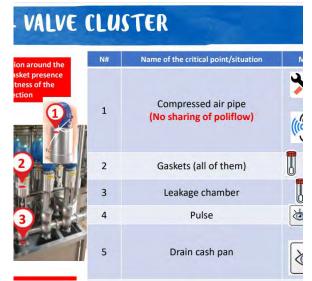

Effective Monitoring Program

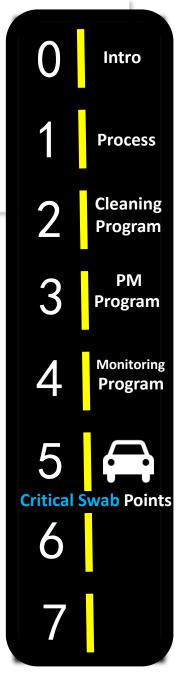

• Identification of Critical Points in Process

• Feedback Loop to an Effective Cleaning Program

• Examples of Program Failures


CRITICAL SWAB POINTS





RISK MANAGEMENT PROGRAM

Agenda

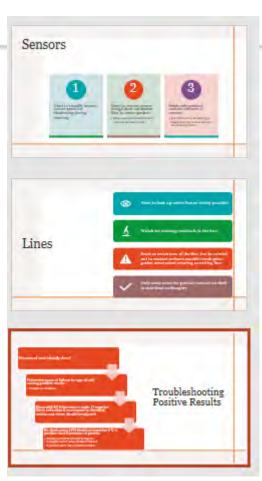
• Introductions & Acknowledgement

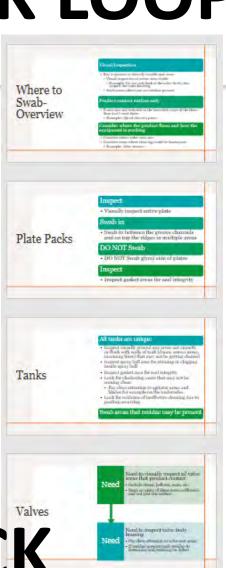
Aseptic Process Overview (Scope of Presentation)

• Effective Cleaning Program Fundamentals

3 • Effective PM Program

Effective Monitoring Program


• Identification of Critical Points in Process


• Feedback Loop to an Effective Cleaning Program

Examples of Program Failures

VALIDATION FEEDBACK LOOP

Agenda

• Introductions & Acknowledgement

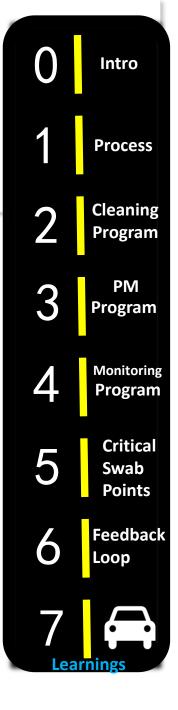
Aseptic Process Overview (Scope of Presentation)

• Effective Cleaning Program Fundamentals

3 • Effective PM Program

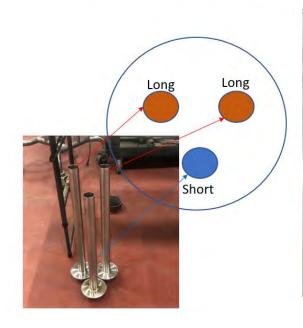
Effective Monitoring Program

• Identification of Critical Points in Process

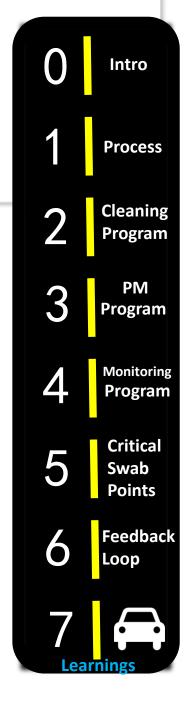

• Feedback Loop to an Effective Cleaning Program

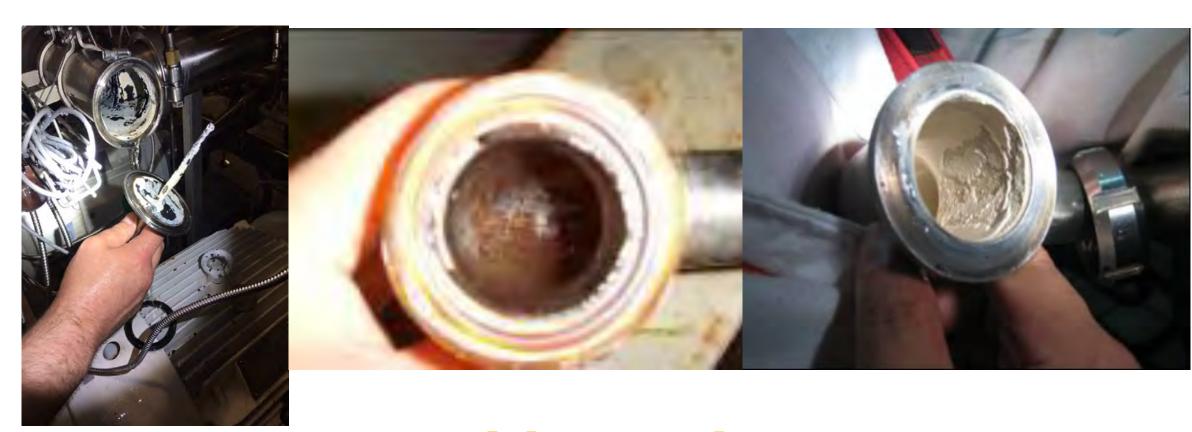
• Examples of Program Failures

FLASH VESSEL BALANCING

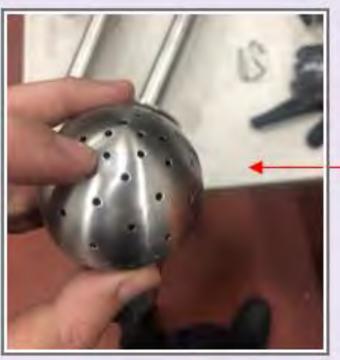

GASKETS

 Deteriorated gaskets cause quality issues.

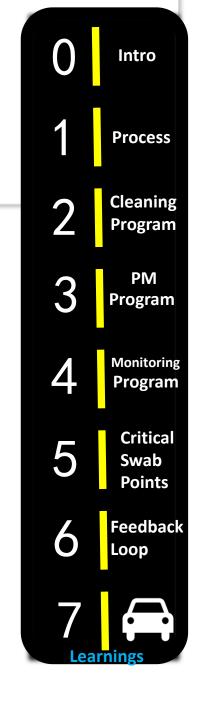

Spray Ball Locations for Tanks R&S

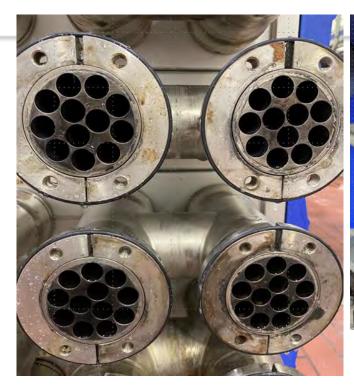


TANK SPRAYBALL CONFIGURATIONS



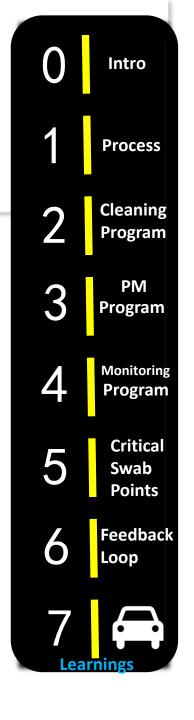
Holding Tube


Process Cleaning **Program** Program Monitoring **Critical Swab** Feedback Loop


LINE CIRCUIT INSPECTIONS

VALVE PART BUSHING

AFTER 6 MONTHS ©



PROCESSOR: Checking outlet vs inlet because turbulent FLOW

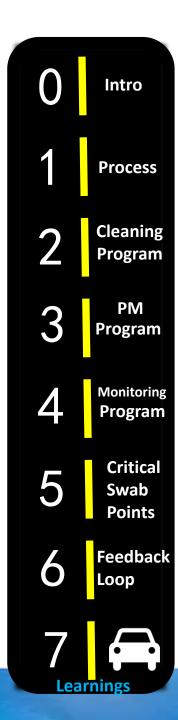
48

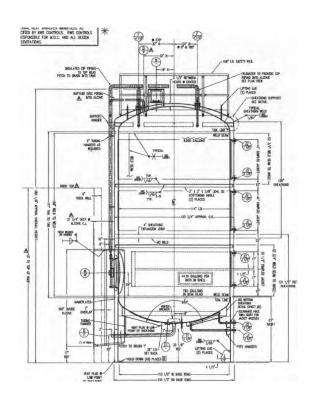
Intro **Process** Cleaning Program Program Monitoring **Program** Critical Swab **Points** Feedback Loop

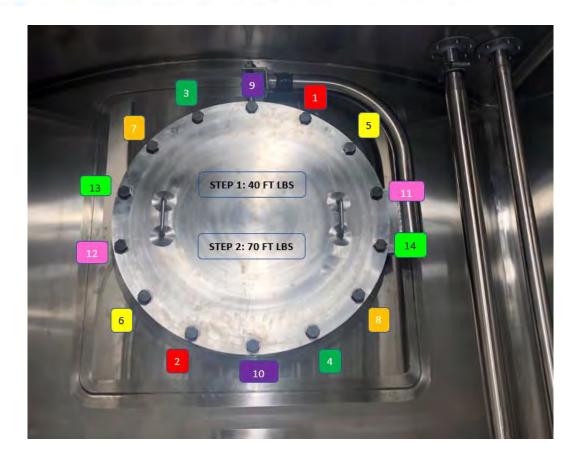
Post Pasteurized Separators

Critical Swab Feedback Loop

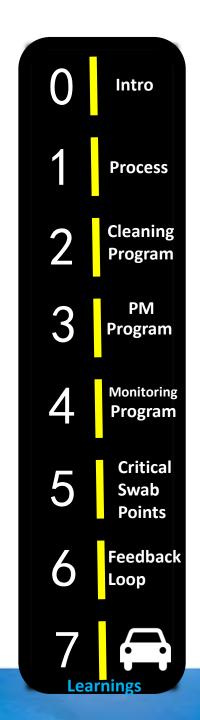
DOING THINGS CORRECTLY WITH RIGHT CHEMISTRY. AIR INCORPORATION + CHEMICAL.




PLATE PACKS INSPECTION
MAINTENANCE: 1 YEAR
INSPECTION AND 3 YEAR
REPLACEMENT

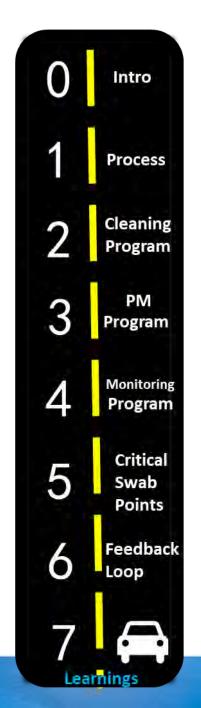

>FLOW FLOW FLOW....

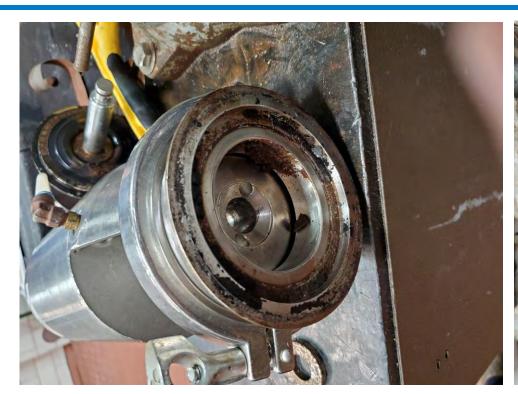
>ACID ACID ACID



Process Cleaning Program **Monitoring Program Critical** Swab **Points** Feedback

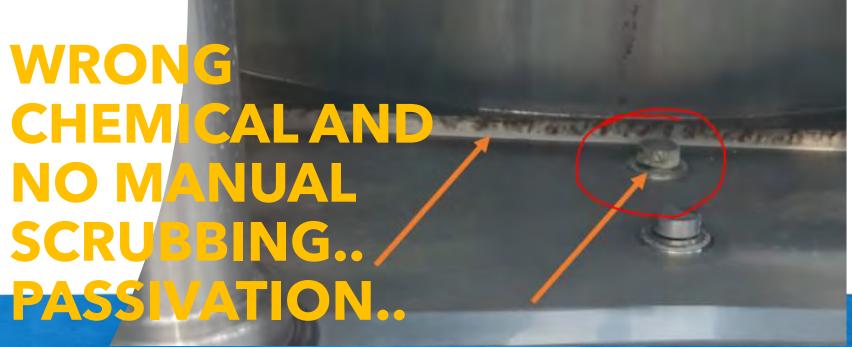
>TANKS: SPRAYBALLS And TORQUE PATTERNS






Intro **Process** Cleaning Program Program Monitoring **Program Critical Swab Points** Feedback Loop

VALVE MAINTENANCE INADEQUATE



STEAM BARRIER VALVE/ PRODUCT CONTACT

Intro **Process** Cleaning Program Program Monitoring **Program Critical Swab Points** Feedback Loop

Care Personally and Be Invested

"IT DOESN'T MATTER WHAT YOU DO FOR A LIVING. YOU DO IT WITH EVERYTHING YOU HAVE." NEPHEW

Juan Antonio "Chi-Chi" Rodríguez (born October 23, 1935) is a Puerto Rican professional golfer. The winner of eight PGA Tour events, he was the first Puerto Rican to be inducted into the World Golf Hall of Fame.

Steven Haferkamp Jeff Merritt Johnny Elliott

CIP – Aseptic 2023

