HEAT TRANSFER DISTRIBUTION – CASE STUDIES

Rosanne P. Batema Associate Director, Product Development Mead Johnson Nutrition

November 5, 2014

MJN Confidential and Proprietary Information

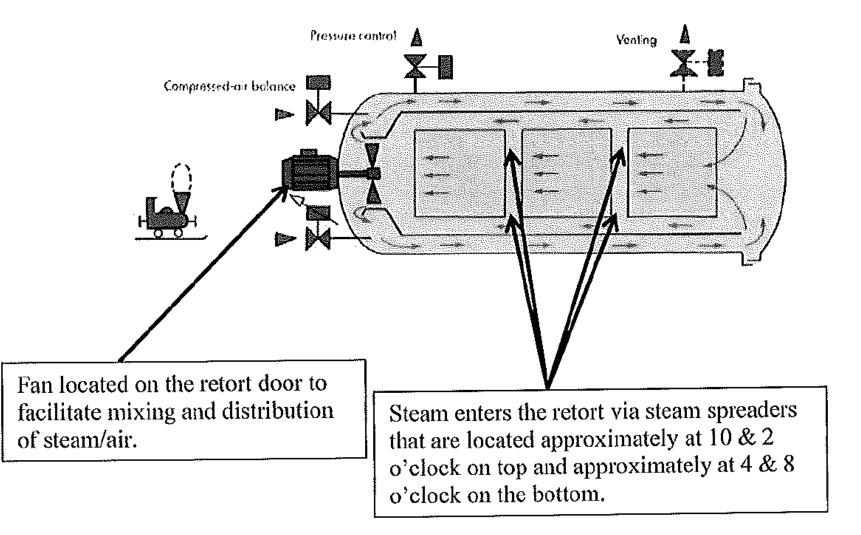
- Presentation Outline
 - Review purposes of Heat Transfer Distribution (HTD)
 - Demonstrate application of IFTPS Guidelines, Chapter 5 on Heat Transfer Distribution
 - Materials and Methods
 - Results
 - Success Criteria Assessment
 - Conclusions & Discussion

IFTPS Guidelines – Chapter 5 – Conducting Heat Transfer Distribution Studies

•Objectives of HTD

- Identify slower to heat locations, if any
- Repeatability of slower to heat locations within a retort or study and across retorts and studies
- Identification of locations for HP studies
- Verification of the process delivery, for example as part of an overall Change Control program or periodic (e.g., annual) verification effort

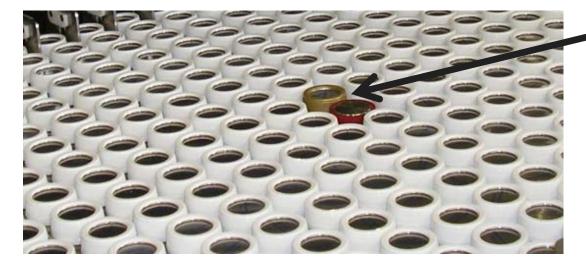
Meadjohnson


IFTPS Guidelines – Chapter 5 – Conducting Heat Transfer Distribution Studies

•TD uniformity in a steam/air process may not always correlate to adequate heat transfer

-However, it is a prerequisite for acceptable HTD.

Meadjohnson

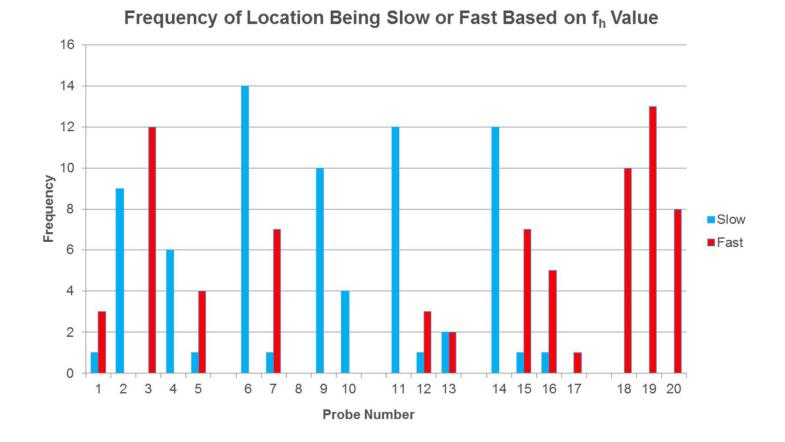

• Methods

	Study Parameters			
	Heat Penetration	Heat Transfer Distribution		
Retort	124.4 C 1.86 bar 5rpm 79.4% Steam, 20.6% Air	125.6 C 1.72 bar 6rpm 86.3% Steam, 13.7% Air		
HP/HTD	Product Filled Package Maximum Solids % Maximum Fill Weight DataTrace @ 6second scan interval	Product Filled Package Maximum Solids % Maximum Fill Weight DataTrace @ 6second scan interval		
Ballast Product Filled Bottles		Product Filled Bottles		
# Probes	20 pairs of TD and HP located across 5 baskets	20 pairs of TD and HIU located across 5 baskets		
# Studies	1	2		

- Datatrace[®] probes were used for both TD and HP/HTD temperature measurements
 - Programmed to collect data at 6-second intervals
 - A TD probe was located in proximity to each HP/HTD test unit
 - A specific probe location map to identify locations for TD and HP/HTD pairs within the retort load was developed and used
 - Slower and Faster to heat locations were included
 - 20 total pairs in each study located across 5 baskets
- Modeling factors (j_h, f_h, j_c, and f_c) were determined using Numerical[®] software
- TD data assessed following IFTPS Guidelines, Chapter 4

Paired TD probe with probed product-filled bottle

- Success Criteria (IFTPS Guidelines, Chapter 5)
 - Temperature Distribution success criteria have been met for each HTD study.
 - The TID at or above minimum process temperature at end of come-up
 - All TMD's within 0.5 C of minimum process temperature at the end of comeup
 - Once Cook Hold commences, all TMD's at or above the minimum process
 - Uniformity and stability of temperatures confirmed by having no TMD temperature fall below minimum process temperature once that TMD has reached the minimum process temperature
 - Retort control and process conditions achieved/met as designed.


- Success Criteria (IFTPS Guidelines, Chapter 5)
 - − f_h %CV ≤5% within and across replicate studies.
 - When this condition has been met, uniform heat transfer conditions have been confirmed and Heat Penetration probes for Process Establishment may be located anywhere in the retort.
 - Verified that the retort is uniform in terms of heat media distribution and delivery and/or the slowest to heat location(s) within the retort load that may be used for HP studies for Process Establishment have been identified.
 - If product-filled packages are used, product functionality and seal integrity are within accepted parameters.

RESULTS

Average f _h Values						
		Α	В	С	D	E
HP	Average					
	STD					
	%CV					
	Average					
HTD-1	STD					
	%CV					
	Average					
HTD-2	STD					
	%CV					
HTD-AII	Average					
	STD					
	%CV					

MJN Confidential and Proprietary Information

• Chapter 5 suggests that using HTD data/studies can be used as a means to verify adequate delivery of the thermal process over time

	Comparison of Average f _h Values Over Time			
	2012 2014			
Product C				
Product D				
Product E				

• Why not use GM F₀?

Average GM F ₀ – Cook End						
		А	В	С	D	Е
	Average					
HP	STD					
	%CV					
	Average					
HD-1	STD					
	%CV					
	Average					
HD-2	STD					
	%CV					
	Average					
HD-All	STD					
	%CV					

- Why not use GM F₀?
 - Higher variation when use F_0 .
 - Lethal rate is an exponential function so small differences in retort temperature and thus product temperatures have a relatively larger impact on the lethal rate.
 - Using f_h as the assessment criteria eliminates this source of variation and allows one to focus on heat transfer.
 - More appropriate way to assess and evaluate potential limiting heat transfer media distribution over TD or GM $\rm F_0$

SUCCESS CRITERIA ASSESSMENT

SUCCESS CRITERIA ASSESSMENT				
CRITERIA	ASSESSMENT			
Temperature Distribution success criteria achieved				
Retort Control & Process Conditions Achieved				
f _h %CV ≤5% within and across replicates				
Uniformity of heat transfer medium verified				
Product functionality and seal integrity within accepted parameters				

Conclusions & Discussion

•Product can effectively be used for HTD studies

•Average f_h values:

- Distinguished between a "minimum, worse case" retort process and the operating process
- Verified the consistency of thermal process delivery over time

• SUMMARY

- IFTPS Guidelines for Conducting Heat Transfer Distribution Tests provide necessary guidance for collecting and analyzing data from HTD studies.
- These Guidelines can successfully be applied where a processor has elected to use product instead of other types of materials such as Teflon blocks or bentonite solutions.

THANK YOU!

QUESTIONS?

MJN Confidential and Proprietary Information

